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’ INTRODUCTION

Freshwater ecosystems are characterized by high levels of
biodiversity, and are among the most threatened ecosystems on
earth 1,2 (Millennium assessment: http://www.maweb.org).
Understanding and managing environmental change in aquatic
ecosystems is complicated by co-occurring and interacting
stressors like climate change, eutrophication, and pollution that,
for example, can interact to favor harmful algal blooms.3�6 We
suffer from a general lack of knowledge on the background rates
and direction of change in pristine ecological systems, as well as
in stressed ecological communities.7 These limits can hamper our
ability to detect the signature of a range of anthropogenic impacts
on ecosystems, or predict patterns of recovery.

Phytoplankton communities are highly diverse and dynamic.
They respond rapidly to climate change, eutrophication, and pol-
lution, and play an important role in aquatic ecosystem biogeo-
chemical processes.4,8�14 Phytoplankton density (algal blooms)
and community composition (e.g., toxic cyanobacteria) are the
prime agents impacting water quality, ecosystem and human

health,15 and have been suggested to be used as such for ecosystem
assessment.16�19 Monitoring, understanding, and predicting
changes in structural (composition, diversity, evenness) and
functional (phenotypic characteristics, growth rate, productivity)
aspects of phytoplankton communities across space and over
time represents however a challenge for aquatic ecology. The
capturing of population dynamics, community succession and
adaptation to environmental change requires: (1) high-fre-
quency sampling to follow fast plankton fluctuations20 and pote-
ntial chaotic dynamics;21 (2) vertical (depth) distribution of algal
taxa and their physio-morphological characteristics (traits);22 (3)
a functional, trait-based assessment of communities and ecosys-
tems based on the characteristics of the organisms’ phenotypes
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ABSTRACT: High quality monitoring data are vital for tracking and
understanding the causes of ecosystem change. We present a poten-
tially powerful approach for phytoplankton and aquatic ecosystem
monitoring, based on integration of scanning flow-cytometry for the
characterization and counting of algal cells with multiparametric ver-
tical water profiling. This approach affords high-frequency data on
phytoplankton abundance, functional traits and diversity, coupled
with the characterization of environmental conditions for growth over
the vertical structure of a deep water body. Data from a pilot study
revealed effects of an environmental disturbance event on the phy-
toplankton community in Lake Lugano (Switzerland), characterized
by a reduction in cytometry-based functional diversity and by a period
of cyanobacterial dominance. These changes were missed by tradi-
tional limnological methods, employed in parallel to high-frequency monitoring. Modeling of phytoplankton functional diversity
revealed the importance of integrated spatiotemporal data, including circadian time-lags and variability over the water column, to
understand the drivers of diversity and dynamic processes. The approach described represents progress toward an automated and
trait-based analysis of phytoplankton natural communities. Streamlining of high-frequency measurements may represent a resource
for understanding, modeling and managing aquatic ecosystems under impact of environmental change, yielding insight into
processes governing phytoplankton community resistance and resilience.
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that directly respond to environmental changes and determine
effects on aggregated processes.13,23,24

The goal of this article is to present an integrated platform able
to (1) provide automated high-frequency measurements of
phytoplankton at different lake depths; (2) couple in situ biolo-
gical monitoring with data about the physical environment; (3)
provide a streamline of real-time data for modeling and forecast-
ing phytoplankton dynamics. By integrating a Cytobuoy with an
Idronaut vertical profiling system, we addressed the objective of
increasing spatiotemporal resolution in field data collection. It
has been proposed that scanning flow-cytometry, offered by
instruments like the commercially available Cytobuoy, may offer
advantages over microscopic methods for cell counting and
classification of phytoplankton, including the possibility of auto-
mation and high frequency field measurements of phytoplankton
physio-morphological characteristics.20,25�27 A novel aspect of
our monitoring approach, therefore, lays in the use of cytometry-
data for a description of phytoplankton functional diversity and
expressed phenotypic traits, which allow tracking phytoplankton
responses at the functional group level. Trait-based approaches
and functional groups are becoming increasingly important in
understanding phytoplankton ecology.22,28�30

In this study we tested our monitoring platform optimized for
deep water bodies, designed to afford comprehensive data to
study phytoplankton ecology and to improve water resource ma-
nagement. To support the validity of our approach we report the
results form a monitoring campaign (spanning roughly one month
inMay 2010) duringwhich automatedmeasurements were coupled
by fortnightly limnological data (physics, chemistry, and biology).31

’MATERIALS AND METHODS

Automated Monitoring Platform. Phytoplankton counting,
characterization, and classification were performed using a scan-
ning flow cytometer Cytobuoy (Woerden, The Netherlands),
designed to analyze the full naturally occurring range from small
(e.g., picoplankton) to large (e.g., colonial cyanobacteria) plank-
tonic particles (1�700 μm in diameter and a few mm in length)
and relatively large water volumes (http://www.cytobuoy.com)25

(Supporting Information (SI) Figure S1-e). In our instrument,
particles were intercepted by two laser beams (Coherent solid-
state Sapphire, 488 and 635 nm, respectively, 15 mW) at the
speed of 2 m s�1. In this study, digital data acquisition was
triggered by the sideward scatter (SWS) signal (908 nm). The
light scattered at two angles, forward (FWS) and SWS, provided
information on size and shape of the particles. The fluorescence
(FL) emitted by photosynthetic pigments was detected as red
(FLR), orange (FLO) and yellow (FLY) signals collected in the
wavelength ranges of 668�734 (chlorophyll-a, Chl-a), 601�668
(phycocyanin and phycoerythrin), and 536�601 nm (degraded
pigments), respectively. Laser alignment and calibration pro-
cesses were done before the monitoring campaign using yellow
FL beads of 1 and 4 μm diameter.
Our Cytobuoy allowed automatic acquisition of particles in

time-intervals, time-specific measurement, and fixed-measure-
ment on occurrence of a trigger signal (see below). This study
was based on automated acquisition of 2 fixed-measurements for
every trigger-signal received in order to optimize the detection
and quantification of small and large particles in two separated
analyzes, and on a scheduled time-specific background measure-
ment per day with water being sampled at 25 m (no phyto-
plankton growth). Remote accessibility of the Cytobuoy via the

Internet-UMTS network allowed unlimited data access and trans-
mission rates along with increased location flexibility. Further
technical details on our Cytobuoy, measuring settings and con-
figurations are reported in the SI.
In order to accomplish depth resolution, we employed a

vertical profiling system made up of three integral parts: Con-
troller Module (SI Figure S1-a,-b), Profiler Module (SI Figure
S1-b), and OCEAN SEVEN 316Plus CTD (O7)multiparameter
probe (SI Figure S1-c) (Idronaut, Brugherio, Italy, www.idro-
naut.it). The O7-probe was equipped with seven sensors: pressure,
temperature (�C), conductivity (μS, absolute and at 20 �C), pH,
oxygen (mg/L and % saturation), and NO3 (μg/L) (Idronaut).
An external TriLux fluorimeter was interfaced with the O7 probe
in order to quantify levels of Chl-a, phycoerythrin and phyco-
cyanin (Chelsea Technologies Ltd., Surry, UK). More informa-
tion on the Idronaut profiling system can be found in the SI.
For automatic depth profiles, we allowed the Cytobuoy to

accept an electric signal from the Idronaut Controller Module as
a trigger to start the measurement cycle during O7 step-profiles.
We ran two independent automatic monitoring programs, one
with the Cytobuoy and one only with the O7-multiparameter
probe, with separated profile settings and different monitoring
frequencies. In this study we scheduled a step profile involving
six depths—covering the entire photic zone—with the Cyto-
buoy (2, 4, 6, 8, 10, and 12 m) and a continuous profile with
the O7-multiparameter probe from 1 to 20 m to be performed
twice a day each, to catch diel variations in the temperature
structure of the water column: the theoretical maximum
and minimum daily stratification at 3 p.m. and 3 a.m. (12 h
frequency), respectively.
For step-profile phytoplankton measurements, we retrieved

water from selected depths using an external pump (capacity 1 L
min�1), an antimicrobial silver-nanoparticle coated and shaded
flexible polyethylene tubing (Flexelene, Eldon James Corp.,
Loveland, CO), and a surface plexiglass chamber (250 mL) from
which the Cytobuoy subsamples through a needle injector (SI
Figure S1-e). The pump was placed downstream from the
chamber in order to avoid damaging algal cells or colonies prior
to measurements. More information on structural components
of the monitoring platform, how we integrated our instruments
to achieve depth profiles, and an example of automated operation
using the integrated system and maintenance details are reported
in the SI.
Sampling. The automated monitoring platform was moored

in Lake Lugano, at a site protected from strong winds and
currents and close to the location of the routine historic lake
monitoring program (coordinates 45�57033.4300N, 8�52053.4900E)
(SI Figure S2). This site is representative for the most eutrophic
of the lake’s three distinct basins31 (SI Figure S2). Data presented
in this article refer to the monitoring period from the 28th of
April to the 31st of May 2010 (with six depths over the photic
zone and a frequency of two profiles per day). Independent
limnological data were collected at 300 m distance from the
platform with a fortnightly frequency. They included physical
characteristics of the whole water column, chemical analyses on
algal nutrients and integrated phytoplankton samples (from 0 to
20 m). Additional information on these data can be found in the
SI. For comparison between cytometry-based richness and
phytoplankton species richness (Table 1, SI Figure S6) we used
additional samples from Lake Lugano collected between June
and December 2010 and data from a study conducted in Lake
Zurich during spring 200932 (SI).
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Data Analysis.Data manipulation, analysis and graphics were
performed in the R programming language (www.r-project.org).
The Cytobuoy provided 54 descriptors of 3D structure and FL
profile for each particle.25 Data sets also included original sam-
pled volume, date, time, and depth at which particles were taken.
We visually inspected the distribution of raw data with regards to
FL signals and set database-specific threshold levels to divide
fluorescent (FL) from non-FL particles. The overall FL and non-
FL databases comprised 1 and 5 million particles, respectively.
Cytobuoy particle descriptors were standardized to zero mean

and unit variance and, by principal component analysis, reduced
to 33 orthogonal vectors covering 99% of total variance in the
data (data not shown). Principal components were utilized for
grouping particles into functional categories using K-means clu-
stering. We compared several K values and selected the optimal
number of K based on the within groups sum of squares.33 Phyto-
plankton densities were calculated by inferring the number of
cells from the number of humps in the SWS signal of each particle
to account for colonial species.20,25 O7 sensor data were orga-
nized in a separated database. Cyanobacterial-like particles were
identified based on FLO and FLR emissions after excitation by
the 495 and 635 nm lasers, respectively, after visual inspection.
These signals are expected as a response to the presence of the
cyanobacterial-specific pigment phycocyanin.25

We modeled richness of Cytobuoy-derived functional groups
of phytoplankton (response variables) in the upper 12 m of the
water column based on high frequency environmental data
(explanatory variables). Explanatory variables included: water
parameters (mean of top 12 m), coefficient of variation (CV =
SD/mean) of parameters over water-column and meteorological
data at time-lag(0), -lag(1) (=24 h), and -lag(2) (=48 h). The
response variables showed significant temporal autocorrelation
only at time-lag(1) (data not shown). We therefore included for
eachmodel the response variable at time-lag(1) as explanatory, in
order to account for temporal autocorrelation of data. All variables

were scaled in order to standardize effect sizes and let to compete
in the same model. The best model was selected based on Akaike’s
information criterion (AIC) with a stepwise procedure (alternation
of forward selection and backward elimination of variables with
p > 0.05).34 The relative importance of drivers was assessed by
bootstrapping (999 times) the percentage contribution to the R2

of the model among the regressors, and extracting the relative
95% confidence intervals.

’RESULTS AND DISCUSSION

Phytoplankton Depth Heterogeneity. Our monitoring ap-
proach was able to reveal fine changes in the relative depth
distribution of phytoplankton functional-group richness, Chl-a
concentration and cell density with statistically significant differ-
ences between day and night profiles (SI, Figure S3�S4). Similar
data have been observed using flow-cytometry in oceanic profiles
of phytoplankton communities.35�37 We did not observe a
significant difference in the vertical physical structure of the
water column between day and night profiles (SI Figure
S3�S4), and limited changes between day and night air-
temperatures during the study period (data not shown). Our
data suggest that depth-specific day-night dynamics in phyto-
plankton community composition and abundance are driven
by biological factors, rather than environmental changes
(SI Results and Discussion).
Temporal Phytoplankton Dynamics. The frequency and

intensity of phytoplankton blooms are key elements for ecolo-
gical status definition.16,17,19 Considering that most algal taxa can
reach bloom conditions and disappear within a few days (implying a
maximum oscillation frequency of 2�3 density peaks per week),
a minimum sampling frequency of 4�6 times per week would be
needed to follow algal dynamics (Nyquist frequency, Table 1)
and quantify their intensity adequately.20

Table 1. Comparison of Selected Properties of Automated Measurements to Classical Phytoplankton Monitoring

feature* classical limnology automated platform

number of samples year�1 (n) 12�18a >700b

lag (Δ) 2 weeks �1 month 12 h

fundamental period (T0 = Δn) 12 >700

frequency (1/T0) 0.083 0.0014

nyquist frequency (1/2Δ), highest

possible frequency

1�2 months (6�12 cycles year�1) 24 h (365 cycles year�1)

resolution of depth gradient from 1 integrated to 10 samples over photic zone from 6 to 12 samples over photic zone

phytoplankton density and physio-

morphological traits

estimated from ca. 200�500 counts/in

100�200 mL

from ca. 30,000 counts/in 100�400 μL volume

number of descriptors measured per individual 2 (size, volume) 54 (3D descriptors, pigment type, concentration etc.)

estimation of diversity taxonomic, functional Functional

number of taxa groups 14 to 61 per samplec NA

number of functional groups 5 to 20 per samplec 4 to 53 per samplec

reproducibility/repeatability of data lowd high 27e

aConsidering one sample per month plus an extra fortnightly sample during productive seasons as in refs 14 and 31 (SI). bThe automated system is
currently producing data series across seasons. cRange in number of species and functional groups during intercalibration performed in Lake Zurich and
Lake Lugano: Reynolds categories29 were utilized for functional grouping of microscopically identified species, for Cytobuoy-derived functional groups
see the Materials and Methods, for a plot of Cytobuoy-derived versus taxonomic diversity see SI Figure S6, dQuality assessment trials highlighted that
phytoplankton microscopic counts can be difficult to reproduce across laboratories since they rely on human subjective assessment, biased by the
experience/ability/condition of the operator, and that they suffer from low repeatability (high differences between replicated samples) (http://www.
planktonforum.eu)26,50 (SI); e Five consecutive-replicated sampling cycles were performed in this study at the same depth and data assessed by canonical
discriminate function analysis (SI). * From ref 34.
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Our automated monitoring platform was able to perform 2
vertical profiles per day (at a fixed depth the maximum frequency
could be of six samples per hr). Figure 1 reports results from daily
monitoring samples (time is 3 pm, frequency = 1 day�1) during
the study. This frequency was capable of capturing fine fluctua-
tions in FL particle density (phytoplankton) and total Chl-a
concentration over the water column (Figure 1A). Our data were
comparable to previous work using flow-cytometry in the field in
terms of temporal resolution on algal dynamics (ref 27 and
literature therein). Measured phytoplankton density was com-
parable with microscopic counts and correlated well with Chl-a
concentration levels (Figure 1A) (R2-adjusted = 0.651, p =
4.324�08), as also reported elsewhere.32 Our system was able
to follow dynamics of non-FL particles (suspended solids, dead

cells, heterotrophic bacteria), which did not correlate with algal
cell concentrations apart from a short period in the middle of the
time-series (days 15�18) (Figure 1A).
Previous work using flow cytometry in phytoplankton aimed

at identifying broad functional groups (such as picoeukaryotes,
microalgae, cyanobacteria, etc.) and some phytoplankton species
with clearly distinguished morphology or pigmentation (such as
Pseudonitzschia, Cryptomonas, Synura, Dinobryon)20,25,27,38 (and
literature therein). This type of analysis lacked a proper measure
of diversity. We used the Cytobuoy to describe key phytoplank-
ton traits like size, coloniality, pigment type, and content, which
we used to create groups of functionally similar individuals.29,30

The possibility of monitoring individually measured phytoplankton
physio-morphological descriptors may offer the best prospects in

Figure 1. Automated measurements of phytoplankton density, diversity and associated changes in environmental heterogeneity. (A) Phytoplankton
abundance (from Cytobuoy, solid line) compared to microscopic counts (black square), abundance of non-FL particles (dashed line, scaled to fit graph
by dividing values by 250) and Chl-a concentration (from O7-probe, gray line); (B) Richness of Cytobuoy-based functional groups (black line)
compared to microscopic species counts (black square), and Pielou’s evenness (Shannon-diversity/Log(species richness)) of groups (gray line)
compared to the same index derived by microscopic counts (gray square); C) CV over the water column in temperature (black line) and conductivity at
20 �C (gray line). The CV can be used as a proxy of environmental (depth) heterogeneity.14 In (A) and (B), data represent the average of the top 12m of
the water column. The gray vertical line highlights the mixing event.
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terms of objectivity, reproducibility, functional properties and
prediction of algal assemblages.22,23,30 The number of Cytobuoy-
derived functional groups was comparable with the total number
of species detected in the photic zone of the water column
(Figure 1B, SI Figure S6), as also reported elsewhere.32 Gen-
erally, the number of functional groups in a community is smaller
than the number of species, since in current functional classifica-
tion methods more than one species can be assigned to the same
functional category.29,30 With our trait-based approach, however,
it is also possible that individuals of the same species can be
allocated to different functional groups based on their expressed
morphology (for example, colonial species can be assigned to two
different groups depending on whether they are present as single
cells or colonies). The Cytobuoy description of the relative
abundance of phytoplankton functional groups deviated from
microscopically measured evenness (Figure 1B). This could be
caused by superior precision of automated density measure-
ments, and to the fact that the identity (and abundance) of
Cytobuoy-derived functional groups does not fully reflect the
identity (and abundance) of microscopically defined taxonomic
groups as reported above (several species can map into one
functional category and individuals of the same species can be
assigned to different groups).
We observed a strong decrease in phytoplankton functional

richness and evenness in the middle of the time-series (Figure 1B),
followed by a short recovery period that led to higher cell density
(Figure 1A). These dynamics were completely missed by the
fortnightly limnological sampling (Figure 1). Our approach of-
fered the advantage of having automated measurements of
environmental conditions for the observed algal dynamics (SI
Figure S7). Six days of rainy and stormy weather (SI Table S1)
were associated with a period of low phytoplankton diversity and
productivity (with high levels of non-FL particles), and a decrease in
CV in temperature and conductivity over the first 12 m of the
water column. This eventually led to a mixing event on day 19
(Figure 1C, SI Figure S7). The phytoplankton community in the
days preceding disturbance (started at day 5) showed a gradual
decline, reaching the minimum of evenness and richness just
before the mixing event (on days 17 and 18, respectively). The
mixing event re-established evenness in the community that fully
recovered functional diversity in 6 days (Figure 1B�C). Func-
tional diversity, as opposed to taxonomic diversity, appears to be
a better predictor of ecosystem functioning across a range of
communities and measures of functional diversity may afford a
better description of the functionality of the ecosystem and its
resilience to disturbance.12,13,23,24,39

Using Cytobuoy-Derived Phytoplankton Traits. Our ap-
proach allows tracking phytoplankton physio-morphological
characteristics such as cell size and shape (which influence motility
and nutrient uptake through surface/volume ratio), photosyn-
thetic performance (driven by pigment type and concentration),
active nutrient uptake and coloniality.22 Cell size and photosyn-
thetic performance are key phytoplankton traits, affecting growth,
metabolism, access to resources, susceptibility to grazing, and are
extremely plastic responding to the environment and to species
interactions.22,32 Analysis of dynamics and distributions of these
focal phytoplankton traits could improve our forecasting capabilities
of community structure and ecosystem functions.12,13,24,39 Pigment
profiles can also be used to specifically target certain phytoplankton
groups of interest in their spatiotemporal dynamics.20,25

We report temporal changes in mean and variance of phyto-
plankton size and suspended non-FL particles size (Figure 2A, SI

Figure S8). In addition, we tracked the dynamics in abundance of
cyanobacteria using Cytobuoy data and phycocyanin/Chl-a
concentration ratios obtained with the O7-probe (Figure 2B).
Shortly before “disturbance” (days 15�17), a period character-
ized by low diversity and productivity (Figure 1), the study site
was dominated by large cyanobacterial colonies (Figure 2A and B).
Mean water column cyanobacterial density obtained by the Cyto-
buoy was almost identical to microscopic count levels (Figure 2B)
and was likely associated with the presence of Planktothrix
rubescens filaments (SI Table S2). The mixing event rapidly
and dramatically reduced cyanobacterial abundance and the
average size of the phytoplankton community (Figure 2).40

Variation in the dimensions of non-FL particles appeared to be
very small compared to the dynamics in phytoplankton size
(note the y-axis scales in Figure 2A). Compared to conditions
before the disturbance, the final days of our time-series were
characterized by smaller size phytoplankton cells (Figure 2A),
probably eukaryotic nanoplankton of genera Stephanodiscus and
Melosira (SI Table S2), dominating a more productive (Figure 1A)
and diverse community (Figure 1B, SI Figure S8).
Our approach introduces the possibility of monitoring a large

number of phytoplankton individuals and their traits per popula-
tion or through the entire community. Individuals and popula-
tions should be the basic units of investigation to assess the status
of communities and ecosystems, since they respond phenotypically

Figure 2. Using phytoplankton traits such as size and pigment content
to track community changes. A) Average size of FL (phytoplankton;
black line) and non-FL (suspended solids, bacteria, dead cells; gray line)
particles; B) Ratio between concentrations of phycocyanin and Chl-a
(black line) and abundance of cyanobacterial-like cells (gray line)
compared to microscopic counts of cyanobacteria (/). Phycocyanin is
a cyanobacterial-specific pigment: the ratio between phycocyanin and
Chl-a concentrations can be used as an indication of the dominance of
cyanobacteria in the phytoplankton community. Data represent the
average of the top 12 m of the water column. The gray vertical line
highlights the mixing event.
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(and genetically) to disturbance or stress and eventually evolve
altering community processes and ecosystem functioning.41

Modeling High-Frequency Phytoplankton Dynamics.Our
automated monitoring approach allows to better couple envir-
onmental forcing with phytoplankton community dynamics, in
particular at the functional level (which may relate to crucial
ecosystem services13,24,42). Using data from the period of study,
we modeled the Cytobuoy-based phytoplankton functional
richness in order to provide an example of how spatiotemporal
measurements of environmental conditions, coupled with biolo-
gical data, can provide insight into drivers of community respon-
ses and changes.
Temperature (both atmospheric and water), conductivity

(whose main contributors were carbonate and bicarbonate ions)
and the heterogeneity of environmental conditions over the
water column appeared to be the most important drivers of
phytoplankton functional richness (Table 2). Most of the drivers
appeared to influence the response variable with a time lag of 24
or 48 h (Table 2). Our modeling exercise highlights the
importance of (i) time-lags between environmental change and
response at the level of phytoplankton community, (ii) variability
of parameters over the water column (depth heterogeneity), and
(iii) in situ meteorological conditions for understanding and
modeling phytoplankton community dynamics. Intensity of flu-
ctuations and heterogeneity by depth in key environmental
variables may represent fundamental factors to understand and
predict changes in plankton diversity.14 The collection of the
above type of high-resolution data would be intractable without
the aid of an in situ automated monitoring station like the one
presented in this study. A similar approach can be used to model
and forecast cyanobacterial blooms.

Toward an Adaptive, Integrated Approach to Aquatic
Ecosystem Monitoring. Monitoring frameworks that evolve
along with our improved knowledge of ecosystem processes
would strongly benefit ecosystem health assessment and man-
agement by allowing to assess the impact of ongoing environ-
mental change, to study recovery processes, and to built more
reliable forecasting models.43 Sophisticated monitoring ap-
proaches like the one that we have developed can offer the
spatiotemporal resolution and flexibility necessary to capture and
model natural phytoplankton responses to disturbance or stress,
or to test ecological and evolutionary hypotheses including the
mechanisms that lead to stable coexistence of species. For
example, high-frequency data afford the possibility of studying
niche processes and environmental filters on diversity and trait
distribution patterns,44,45 while tracking the vertical distribution
of functional groups and their abundance allow testing for the
importance of dispersal limitation among patches in the assembly
of the phytoplankton community.46

Table 1 summarizes some of the properties of our automated
data-series compared to traditional monitoring, including diel
temporal resolution in phytoplankton community dynamics and
water column structure over the photic zone of the lake (Figure 1,
2, SI Figures S3, S4, S7). We were not able to capture horizontal
spatial heterogeneity of phytoplankton and the associated en-
vironment. The lack of spatial information across the water
surface may be solved by integrating our platform data with
remote sensing from satellites or from local devices that use
spectral information reflected from the water surface47 (http://
www.waterinsight.nl). Depth represents however the most het-
erogeneous aspect of the phytoplankton spatial environment,
and our vertical profiles may be crucial to understand and model
the effects of disturbance, spatial heterogeneity and patch
dynamics on phytoplankton community structure.48,49 Several
phytoplankton groups are in fact capable of vertically migrating
in the water column being motile (e.g., dinoflagellates) or able to
regulate buoyancy (e.g., cyanobacteria).29 Depth resolution is
therefore essential to track algal populations, which can be
defined as groups of similar organisms (for example belonging
to the same cytometry-derived cluster) that coexist at the same
time in the same water layer.
The bottleneck in monitoring natural systems is the develop-

ment of automated technologies for the identification and
counting of organisms.20,27,50,51 Our description of phytoplank-
ton richness obtained by cluster analysis of automated flow-
cytometry data appeared to closely match the taxonomic richness
derived by microscopic analysis (Table 1, SI Figure S6). Tech-
nical repeatability and across-lab reproducibility currently repre-
sent disadvantages of classical microscopic counts. An automated
monitoring station like the one that we developed may offer the
objectivity and reproducibility of a standardized measuring system
that (1) reduces human error; (2) affords a detailed description
of individual algal features; (3) provides high data complexity;
and (4) increase spatiotemporal resolution compared to man-
made monitoring campaigns (Table 1).20,50

The temporal and spatial monitoring scales of our analysis
(Table 1) were roughly equivalent since both of them reflected
processes operating over day-night cycles across the water
column. The benefits of an integrated spatiotemporal approach
to monitoring include52 (i) accounting for spatiotemporal coex-
istence mechanisms that purely spatial or temporal approaches
would miss; (ii) generating new hypotheses and allowing rigor-
ous testing of theoretical models; (iii) improving our descriptive

Table 2. Multiple Linear Regression Model Describing Phy-
toplankton Richness (Cytobuoy-Derived Functional Groups)
in Terms of Changes in Environmental Conditions over the
Period of Study

drivera coefficient p-value percentage of R2b

95%

confidencec

lower upper

Air T-lag(1) 0.906 0.0000 22.7 0.113 0.277

Cond.-lag(1) 0.266 0.0282 16.3 0.067 0.230

Cond.-lag(2) 0.589 0.0000 15.7 0.096 0.193

CV-Cond.-lag(1) 0.751 0.0000 10.8 0.063 0.142

pH-lag(2) 0.709 0.0000 10.2 0.058 0.168

N-NO3 �0.286 0.0000 4.5 0.032 0.064

CV-pH-lag(1) 0.544 0.0143 4.2 0.042 0.066

N-NO3-lag(2) 2.246 0.0001 3.9 0.034 0.047

CV-Water

T-lag(1)

�1.394 0.0000 3.8 0.025 0.073

Water T-lag(1) �0.932 0.0010 2.7 0.022 0.037

N-NO3-lag(1) 1.519 0.0035 2.6 0.031 0.037

CV-NO3-lag(1) 0.534 0.0097 1.7 0.016 0.040

Light -lag(1) 0.203 0.0012 0.9 0.015 0.079
aDrivers: T = temperature (�C); Cond. = conductivity at 20 �C; CV =
coefficient of variation over the sampled depths; Light = maximum
irradiance (W/m2); lag(1) and (2) = time-lag 24 and 48 h, respectively.
bDrivers are ordered based on their relative contribution to the R2 of the
model, expressed as percentage of total. cConfidence intervals refer to
the bootstrapped relative contribution to the R2 of the model.
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power for developing forecasting models; and (iv) optimizing
monitoring strategies by choosing appropriate scales for sam-
pling. A fine spatiotemporal resolution with regards to organisms
and the environment may represent a critical resource for
scientists and stakeholders challenged by understanding, model-
ing, and managing aquatic ecosystems.17�19 The approach
presented here can be applied to both freshwater and marine
ecosystems, and to both natural and engineered environments
such as drinking water reservoirs, water-treatment, and aqua-
culture plants.
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